MASTR II MAINTENANCE MANUAL 138-174 MHz RECEIVER

SPECIFICATIONS *

Audio Output (to 8-ohm Speaker) Sensitivity	12 Watts at less than 3\% distortion Standard Receiver Ultra-High Sensitivity Receiver
12-dB SINAD (EIA Method) 20-dB Quieting Method	$\begin{array}{ll} 0.35 \mu \mathrm{~V} & 0.175 \mu \mathrm{~V} \\ 0.50 \mu \mathrm{~V} & 0.25 \mu \mathrm{~V} \end{array}$
SElectivity	
EIA Two-Signal Method 20-dB Quieting Method	-100 dB -100 dB -95 dB
Spurious Response	-100 dB -90 dB
Intermodulation (EIA)	$-85 \mathrm{~dB}$
Frequency Stability	
$\begin{aligned} & \text { 5C-ICOM with EC-ICOM } \\ & 5 \mathrm{C}-\text { ICOM or EC-ICOM } \\ & \text { 2C-ICOMS } \end{aligned}$	$\begin{aligned} & \pm 0.0005 \%\left(-40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right) \\ & \pm 0.0002 \%\left(0^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C}\right) \\ & \pm 0.0002 \%\left(-40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right) \end{aligned}$
Modulation Acceptance	$\pm 7 \mathrm{kHz}$ (narrow-band)
Squelch Sensitivity	
Critical Squelch Maximum Squelch	```0.2\muV Greater than 20 dB quieting (less than 1.5 \muV)```
Maximum Frequency Separation(Multi-Frequency Units) \quad Full Specifications $\quad 3 \mathrm{~dB}$ Degradation	
$\begin{aligned} & 138-155 \mathrm{MHz} \\ & 150.8-174 \mathrm{MHz} \end{aligned}$	$\begin{array}{ll} .900 \mathrm{MHz} & 1.60 \mathrm{MHz} \\ 1.0 \mathrm{MHz} & 1.80 \mathrm{MHz} \end{array}$
Frequency Response	Within +1 and -8 dB of a standard $6-\mathrm{dB}$ per octave de-emphasis curve from 300 to 3000 Hz ($1000-\mathrm{Hz}$ reference)
RF Input Impedance	50 ohms

* These specifications are intended primarily for the use of the serviceman. Refer to the appropriate Specification Sheet for the complete specifications.

TABLE OF CONTENTS

SPECIFICATIONS Cover
DESCRIPTION 1
CIRCUIT ANALYSIS 1
RF Assembly 1
UHS Pre-amplifier 1
Antenna Input A301 2
Oscillator/Multiplier Board 2
ICOMs
ICOMs 2 2
Multiplier and Amplifier 4
Mixer/IF Board 4
Mixer and Crystal Filter 4
IF Amplifier 4
IF-Audio \& Squelch Board 4
Crystal Filters, IF AMP and Limiter 4
Discriminator and Audio Pre-Amp 4
Audio IC 5
Squelch IC 5
MAINTENANCE 6
Disassembly 6
Alignment Procedure 7
Test Procedures 8
Receiver Troubleshooting 9
OUTLINE DIAGRAM 10
SCHEMATIC DIAGRAMS
RF assembly, Osc/Mult \& Mixer/IF Boards 12
IF Audio \& Squelch Board 13
PARTS LIST AND PRODUCTION CHANGES
RF Assembly, Osc/Mult \& Mixer/IF Boards 11
IF Audio \& Squelch Board 14
MODIFICATION INSTRUCTION 15
ILLUSTRATIONS
Figure 1 - Block Diagram 1 2
Figure 2 - Typical Crystal Characteristics
Figure 2 - Typical Crystal Characteristics
Figure 3 - Equivalent ICOM Circuit 3
Figure 4 - Disassembly Procedure (Top View) 6
Figure 5 - Disassembly Procedure (Bottom View) 6
Figure 6 - Test Set-Up 7
Figure 7 - Frequency Characteristics Vs. Temperature 7

WARNING

Although the highest DC voltage in MASTR II Mobile Equipment is supplied by the vehicle battery, high currents may be drawn under short circuit conditions. These currents can possibly heat metal objects such as tools, rings, watchbands, etc., enough to cause burns. Be careful when working near energized circuits! High-level RF energy in the transmitter Power Amplifier assembly can cause RF burns upon contact. Keep away from these circuits when the transmitter is energized:

DESCRIPTION

MASTR II, 138 to 174 megahertz receivers are single conversion, superheterdyne FM receivers designed for one- through eight-frequency operation. The solid state receiver utilizes integrated circuits (ICs), monolithic crystal filters and discrete components with each of the crystal filters located between gain stages to provide 100 dB selectivity and maximum protection from de-sensitization and intermodulation.

The receiver consists of the following modules:

- RF Assembly
- Mixer/IF (MIF)
- Oscillator/Multiplier (Osc/Mult)
- IF/Audio and Squelch (IFAS)
- Optional Ultra-High Sensitivity (UHS) Pre-Amplifier

Audio, supply voltages and control functions are connected to the system board through P903 on the Osc/Mult board, and

P904 on the IFAS board. The regulated +10 Volts is used for all receiver stages except the audio PA stage which operates from the A+ system supply.

Centralized metering jack $J 601$ on the IFAS board is provided for use with GE test Set 4EX3All or Test Kit 4EX8K12. The test set meters the oscillator, multiplier, discriminator and IF amplifier stages. Speaker high and low are metered on the system board metering jack.

CIRCUIT ANALYSIS

RF ASSEMBLY

PRE-AMPLIFIER

The pre-amplifier is present only in UHS receivers, and uses a dual-gate Field Effect Transistor (FET) to provide approximately 12 dB gain.

RF from the antenna is coupled through T2301 to Gate 1 of pre-amplifier Q2301. The primary of $T 2301$ provides a 50 -ohm input impedance. The amplified output at the drain terminal of Q2301 is coupled through

Figure 1 - Receiver Block Diagram

T2302 and connected to J1 on Antenna Input board A301 through cable W2302. T2302 is tapped to provide a 50 -ohm output impedance. p2301 connects to J501 on the MIF board for the regulated +10 -Volt supply voltage.

ANTENNA INPUT A301

An RF signal from the antenna or UHS pre-amplifier is applied to A301 which provides an $A C$ ground between vehicle ground and receiver $A-$. Resistor R1 prevents a static charge from building up on the vehicle antenna. The output of A301 is coupled through five high Q helical resonators that provide the front end RF selectivity. The helicals are tuned to the incoming frequency by C301 through C305.

OSCILLATOR - MULTIPLIER

The oscillator-multiplier can be equipped with up to eight Integrated Circuit Oscillator Modules (ICOMs). The ICOM crystal frequencies range from approximately 14 to 18 megahertz, and the crystal frequency is multiplied nine times and then amplified to provide a low side injection frequency to the mixer. An optional modification kit is available for high side injection.

ICOMS

Three different types of ICOMs are available for use in the Osc/Mult module. Each of the lCOMs contains a crystal-controlled Colpitts oscillator, and two of the ICOMs contain compensator ICs. The different ICOMs are:

- 5C-ICOM - contains an oscillator and a 5 part-per-million ($\pm 0.0005 \%$) compensator IC. Provides compensation for EC-ICOMs.
- EC-ICOM - contains an oscillator only. Requires external compensation from a $5 \mathrm{C}-\mathrm{ICOM}$.
- 2C-ICOM - contains an oscillator and a 2 PPM ($\pm 0.0002 \%$) compensator IC. Will not provide compensation for an EC-ICOM.

The ICOMs are enclosed in an RF shielded can with the type ICOM (5C-ICOM, EC-ICOM or 2C-ICOM) printed on the top of the can. Access to the oscillator trimmer is obtained by prying up the plastic tab on the top of the can. The tabs can also be used to pull the ICOMs out of the radio.

Frequency selection is accomplished by switching the ICOM keying lead (terminal 6) to A- by means of the frequency selector switch on the control unit. In single-frequency radios, a jumper from H 9 to HlO in the control unit connects terminal 6 of the ICOM to $A-$. In the receive mode, +10 Volts is applied to the external

ICOM load resistor (R401) by the RX Osc control line, keeping the selected ICOM turned on. Keying the transmitter removes the 10 Volts at R401, turning the ICOM off.

CAUTION

All ICOMs are individually compensated at the factory and cannot be repaired in the field. Any attempt to repair or change an ICOM frequency will void the warranty.

In standard 5 PPM radios using EC-ICOMs, at least one 5 C -ICOM must be used. The 5C-ICOM is normally used in the receiver Fl position, but can be used in any transmit or receive position. One $5 \mathrm{C}-\mathrm{ICOM}$ can provide compensation for up to $15 \mathrm{EC}-\mathrm{ICOMs}$ in the transmitter and receiver. Should the 5 C -ICOM compensator fail in the open mode, the EC-ICOMs will still maintain 2 PPM frequency stability from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C} \quad\left(+32{ }^{\circ} \mathrm{F}\right.$ to $131^{\circ} \mathrm{F}$) due to the regulated compensation voltage (+5 Volts) from the $10-V o l t$ regulator IC. If desired, up to 165 C -ICOMs may be used in the radio.

The 2C-ICOMs are self-compensated to 2 PPM and can not provide compensation for EC-ICOMs.

Oscillator Circuit

The quartz crystals used in ICOMs exhibit the traditional "S" curve characteristics of output frequency versus operating temperature.

At both the coldest and the hottest temperatures, the frequency increases with increasing temperature. In the middle temperature range (approximately $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$), frequency decreases with increasing temperature.

Figure 2 - Typical Crystal Characteristics

Figure 3 - Equivalent ICOM Circuit

Since the rate of change is nearly linear over the mid-temperature range the output frequency change can be compensated by choosing a parallel compensation capacitor with a temperature coefficient approximately equal and opposite that of the crystal.

Figure 2 shows the typical performance of an uncompensated crystal as well as the typical performance of a crystal which has been matched with a properly chosen compensation capacitor.

At temperatures above and below the midrange, additional compensation must be introduced. An externally generated compensation voltage is applied to a varactor (voltage-variable capacitor) which is in parallel with the crystal.

A constant bias of 5 Volts (provided from Regulator IC U901 in parallel with the compensator) establishes the varactor capacity at a constant value over the entire mid-temperature range. With no additional compensation, all of the oscillators will provide 2 PPM frequency stability from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(+32{ }^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$.

Compensator Circuits

Both the 5C-ICOMs and 2C-ICOMs are temperature compensated at both ends of the temperature range to provide instant frequency compensation. An equivalent $1 C O M$ circuit is shown in Figure 3.

The cold end compensation circuit does not operate at temperatures above $0^{\circ} \mathrm{C}$. When the temperature drops below $0^{\circ} \mathrm{C}$, the circuit is activated. As the temperature decreases, the equivalent resistance decreases and the compensation voltage increases.

The increase in compensation voltage decreases the capacity of the varactor in the oscillator, increasing the output frequency of the ICOM.

The hot end compensation circuit does not operate at temperatures below $+55^{\circ} \mathrm{C}$. When the temperature rises above $+55^{\circ} \mathrm{C}$, the circuit is activated. As the temperature increases, the equivalent resistance decreases and the compensation voltage decreases. The decrease in compensation voltage increases the capacity of the varactor, decreasing the output frequency of the ICOM.

Service Note: Proper ICOM operation is dependant on the closely-controlled input voltages from the 10 -Volt regulator, Should all of the ICOMs shift off frequency, check the 10 -Volt regulator module.

MULTIPLIER \& AMPLIFIER

The output of the Selected ICOM is coupled through a tuned circuit (L401 and C405) that is tuned to three times the crystal frequency. The output of the tuned circuit is applied to the base of a Class C multiplier, Q401. The collector tank circuit of the multiplier (L402 and C409) is tuned to nine times the crystal frequency. The multiplier stage is metered at metering jack J601-3 on the IFAS board.

Following the multiplier is a Class A Amplifier stage, Q402. Q402 is metered at J601-4 on the IFAS board through a metering network consisting of C415, C416, CR401 and R408. The amplified output of Q402 is applied to a tuned circuit (L403 and C413) that is tuned to nine times the crystal frequency. The tuned circuit provides some selectivity in the oscillator-multiplier chain.

MIXER-IF

MIXER \& CRYSTAL FILTER

The mixer uses a FET (Q501) as the active device. The FET mixer provides a high input impedance, high power gain, and an output relatively free of harmonics (low in intermodulation products).

In the mixer stage, $R F$ from the helical resonators is coupled through L 502 and C502 which matches the RF output to the gate of mixer Q501. Injection voltage from the multiplier-selectivity stages is applied to the source of the mixer. The 11.2 MHz mixer IF output signal is coupled from the drain of Q501 through a tuned circuit (L505 and C505) which matches the mixer output to the input of the four-pole monolithic crystal filter. The highly-selective cyrstal filter (FL501 and FL502) provides the first portion of the receiver IF selectivity. The output of the filter is coupled through impedance-matching network L520 and C523 to the IF amplifier.

Service Note: Variable capacitor C52l does not require adjustment when performing normal alignment. If the four-pole monolithic crystal filter is replaced, then adjustment of C521 is necessary for optimum IF response.

IF AMPLIFIER

IF amplifier Q520 is a dual-gate FET. The filter output is applied to Gate 1 of the amplifier, and the output is taken from the drain. The biasing on Gate 2 and the drain load determines the gain of the stage. The amplifier provides approximate-
ly 20 dB of IF gain. The output of Q520 is coupled through a network (L521 and C528) that matches the amplifier output to the crystal filter on the IFAS board. The output of the MIF board is applied to the IFAS board through feed-through capacitor C325.

Supply voltage for the RF amplifier and MIF board is supplied from the IFAS broad through feed-through capacitor C326.

IF-AUDIO \& SQUELCH

CRYSTAL FILTERS, IF AMP \& LIMITER
IF from the MIF board is applied to a second four-pole monolithic crystal filter (FL601 and FL602) for additional selectivity. Following the filter circuits (FL601 and FL602) are impedance matching. networks C601, L609, and R621, and C603 and L601 respectively. The output of the filter is applied to IF amplifier IC (U601). The amplifier IC provides approximately 60 dB of IF gain.

Following U601 is matching network L602 and C607, and two-pole crystal filter FL603 which provides the final receiver IF selectivity. The filter output is applied to impedance matching circuit C 612 and L603. The IF signal is coupled through C611 to the limiter IC (U602). The limiter IC provides approximately 60 dB of IF gain. The IF amplifier output is metered at J601 through metering network C613, C614, L604 and CR601.
Service Note: Variable capacitors C601, C603, C607 and C612 do not require adjustment when performing normal alignment. If the 4 -pole crystal filter or the 2 -pole crystal filter is replaced, then adjustment of the associated capacitors will be necessary to achieve optimum IF response.

DISCRIMINATOR \& AUDIO PRE-AMP

The limiter output is applied to a Foster-Seely crystal discriminator where diodes CR602 and CR603 recover the audio. L605 is adjusted for zero discriminator reading. The discriminator is metered at J601-2 through R616.

The discriminator output is coupled through potentiometer R614 which is adjusted to set the audio level to the audio preamp IC (U602). The pre-amp provides approximately 26 dB of audio gain.

Service Note: R614 does not normally require adjustment unless 4602 or parts of the discriminator are replaced. If adjustment should be required, set R614 for one Volt RMS measured at P904-11 with a 1000 microvolt signal with 1 kHz modulation and 3 kHz deviation applied to the antenna jack.

The output of the audio pre-amp is coupled through a low-pass filter (L607 and C636) to VOLUME and SQUELCH control high. The filter removes any IF signal remaining in the audio output of the pre-amp.

AUDIO IC

The hybrid audio IC (U604) uses a custom flip-chip monolithic integrated circuit. The audio IC contains a standard EIA Channel Guard tone reject filter, a receiver deemphasis circuit, and the low level audio PA drive circuitry.

Audio from the pre-amp is coupled through the VOLUME control to pin 4 of the audio IC from P904-13 (VOL ARM). Audio at pin 4 is applied to the Channel Guard tone reject circuit, and then to the $6 \mathrm{~dB} /$ octave de-emphasis circuit. The filter output through C635 to the differential audio driver circuit. The output of the audio driver circuit is DC-coupled to the pushpull, Class AB audio PA transistors, Q601 and Q602. The PA output is coupled through audio transformer $T 601$ to provide a low distortion, 12 -Watt output to the 8 -ohm loudspeaker. R619 and C637 in the transformer secondary protects the PA transistors against a "no-load" or open circuit. Feedback from windings T601-3 and -4 determines the gain of the audio driver amplifier.

When the receiver is squelched, pin 1 of audio IC U604 is near A-, and the entire audio circuit is turned OFF to eliminate current drain. Pin 1 is also connected to the system board through P904-7 (RX MUTE) so that the receiver audio can be disabled by the time delay circuit in the 10 -Volt regulator, and by the Channel Guard option when used.

Pins 6 and 7 are connected to the system board through P904-16 (RX PA) and P904-21 (INTCM INPUT) so that the receiver audio stages can be used to provide an audio output when the radio is equipped with the Intercom option.

Pin 2 is connected to the system board through P904-6 (SQ DISABLE) so that the receiver audio stages can be independently activated and used to provide an alert tone output when the radio is equipped with the Carrier Controlled Timer option.

SQUELCH IC

The hybrid squelch IC (U603) also uses a custom flip-chip monolithic integrated circuit. The squelch IC contains the noise amplifier, active noise filter, detector, slow and fast squelch circuits as well as the receiver unsquelched sensor (RUS) switch, and carrier activity sensor (CAS) switch.

Noise Amp, Filter \& Active Detector

Noise from the discriminator is coupled through the SQUELCH control to pins 1 and 2 on the squelch IC. This signal is applied to the noise amplifier and then to the active filter circuit.

The noise amp and active filter provide the gain and selectivity to distinguish between noise and audio. The filter output drives the active detector circuit to provide the squelch switching functions. Thermistor RT60l keeps the input to the active detector constant over wide variations in temperature.

Slow \& Fast Squelch

With a signal below the 20 dB quieting level, the slow squelch circuit provides a conventional slow (200 millisecond) squelch operation to prevent rapid squelch opening and closing in weak signal areas.

A signal at or above the 20 dB quieting level is sensed by the signal level detector and activates the fast squelch circuit, providing a fast (lo millisecond) squelch. operation.

The squelch circuits have two outputs. One output controls the squelch switch and the other output controls the CAS switch.

Squelch Switch

The squelch switch output at pin 7 is connected to pin 1 of the audio IC. When the receiver is squelched, the output pin at 7 is near A-. This keeps the receiver audio stages turned off, muting the receiver. When the receiver is quieted by an on-frequency signal (unsquelches), the voltage at pin 7 rises to approximately +10 Volts. This turns on the audio stages and sound is heard at the speaker.

With the receiver unsquelched, the output of the squelch switch turns on the RUS switch. The output of the RUS switch is connected to the noise amplifier, providing a hysteresis loop in the squelch circuit. The RUS output increases the gain of the noise amplifier, preventing squelch closing on weak signals. The RUS output at pin 8 is also connected to the system board through p904-8 for special applications.

NOTE

In Channel Guard radios, the RUS switch will operate only when an on-frequency signal with the correct Channel Guard tone is applied to the receiver.

CAS Switch

The squelch circuits also drive the CAS switch. When the receiver unsquelches,
the voltage at pin 6 rises to approximately 10 Volts. This voltage is connected to the system board through p904-9, and is used to turn on an optional Channel busy light on the Control Unit.

NOTE

The CAS switch will operate whenever an on-frequency signal is received, with or without a correct Channel Guard tone.

MAINTENANCE

DISASSEMBLY

To service the Receiver from the top (see Mechanical Parts Breakdown):

1. Pull the locking handle down, then pry up the top cover at the front notch and lift off the cover.

To service the Receiver from the bottom:

1. Pull the locking handle down and pull the radio out of the mounting frame.
2. Remove the top cover, then loosen the two bottom cover retaining screws and remove the bottom cover (see Figure 4).

Figure 4 Disassembly Procedure (Top View)
To remove the MIF board from the radio:

1. Remove the seven screws (E) holding the MIF bottom cover.
2. Remove the four screws (F) holding the MIF top cover.
3. Remove the two screws (G) and the Connector (H) , and carefully push down on the top of the board to avoid damaging the feedthrough capacitors.
4. To gain access to the bottom of the Osc/Mult and IFAS board, remove the six screws (A) holding the receiver bottom cover (see Figure 5).

To remove the OSC/Mult board from the radio:

1. Remove the six screws (A) holding the receiver bottom cover.
2. Remove the seven screws (E) holding the MIF bottom cover.
3. Remove the four screws (B) holding the board.
4. Press straight down on the plug-in Osc/Mult board from the top to avoid bending the pins when unplugging the board from the system board jack.

To remove the IFAS board from the radio:

1. Remove the six screws (A) holding the bottom cover, and the one screw (C) holding the board.
2. Remove the two screws (D) holding the audio PA heatsink to the right side rail.
3. Press straight down on the plug-in IFAS board from the top to avoid bending the pins when unplugging the board from the system board jack.

Figure 5 Disassembly Procedure (Bottom View)
To remove the optional UHS pre-amplifier board:

1. Remove the seven screws (E) holding the MIF bottom cover, and the four screws (F) holding the MIF top cover.
2. Disconnect the two connectors and 10Volt lead (J).
3. Remove the two screws on the bottom side of the board, and lift out the board.

OSCILLATOR/MULTIPLIER BOARD 19D423241Gl-4 AND IF/AUDIO
 SQUELCH BOARD 19D417707Gl,2

DESCRIPTION	Page 1
RECEIVER ALIGNMENT INSTRUCTIONS	Page 3
TEST PROCEDURE	Page 4
TROUBLESHOOTING PROCEDURE	Page 5
MAINTENANCE MANUAL, OSCILLATOR/MULTIPLIER	LBI-4984
MAINTENANCE MANUAL, IF/AUDIO/SQUELCH	LBI-4986

DESCRI PTION

This addendum contains information for servicing MASTR II receivers using Oscillator/Multiplier Boards 19D42324lGl-4 or 19D416610G1-4 and IF/AUDIO/Squelch Boards 19D417707Gl,2 or 19D416606G1,2. Since MASTR II receivers may contaín any combination of these boards, two complete sets of receiver alignment, test and troubleshooting procedures are provided.

NOTE
The part number identifying each board is marked on the component side of the board.

For receivers using OSC/MULT board 19D416610Gl-4 and IFAS board 19D416606G1,2, refer to LBI-456l for service information.

For receivers using OSC/MULT board 19D423241G1-4 and IFAS board 19D417707G1,2, service information is provided in this addendum.

NOTE
Service information for OSC/MULT board 19D42324lG1-4 contained in LBI-4984 is also provided in Datafile Folder llo6. Service information for IFAS board 19D417707G1,2 contained in LBI-4986 is also provided in Datafile Folder 1105.

When combinations of OSC/MULT board 19D416610Gl-4 and IFAS board 19D417707Gl,2,
or OSC/MULT board 19D423241Gl-4 and IFAS board 19D4l6606Gl,2, are used, the alignment instructions must be tailored to each individual receiver. The following paragraphs identify the procedures required to properly align these receivers.

NOTE

The following procedures require the use of the Receiver Alignment Procedure contained in LBI-4561 and the Receiver Alignment Procedure contained in this addendum.

FRONT END ALIGNMENT FOR
 OSC/MULT BOARD 19D416610G1-4 AND IFAS BOARD 19D417707G1,2

PROCEDURE

A. Steps 1 and 2 in LBI-4561.
B. Steps 4 thru 6 in Addendum.

FRONT END ALIGNMENT
FOR
OSC/MULT BOARD 19D423241Gl-4 AND
IFAS BOARD 19D416606G1,2

PROCEDURE

A. Steps 1 thru 3 in Addendum.
B. Steps 3 thru 5 in LBI-4561.

COMPLETE RECEIVER ALIGNMENT FOR
OSC/MULT BOARD 19D4 16610G1-4 AND IFAS BOARD 19D417707G1,2

PROCEDURE

A. Steps 1 and 2 in Addendum.
B. Steps 3 and 4 in LBI-4561.
C. Steps 6 thru 15 in Addendum.

COMPLETE RECEIVER ALIGNMENT FOR
OSC/MULT BOARD 19D423241Gl-4 AND
IFAS BOARD 19D416606G1,2

PROCEDURE

A. Steps 1 and 2 in LBI-4561.
B. Steps 3 thru 5 in Addendum.
C. Steps 5 thru 14 in LBI-4561.

ICOM FREQUENCY ADJUSTMENT

First, check the frequency to determine if any adjustment is required. The frequency measurement requires equipnent with an absolute accuracy which is 5 to 10 times better than the tolerance to be maintained. When performing . frequency measurement, the entire radio should be as near as possibie
A. $\pm 0.5 \mathrm{PPY}$, when the radio is at $26.5^{\circ} \mathrm{C}\left(79.8^{\circ} \mathrm{F}\right)$.
B. $\pm 2 \mathrm{PPM}$ at any other temperature within the range $-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(+23^{\circ} \mathrm{Y}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$.
C. The specification $1 \mathrm{imit}(\pm 2 \mathrm{PPM}$ or $\pm 5 \mathrm{PPM})$ at any temperature within the ranges $-40^{\circ} \mathrm{C}$ to $-5^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+23^{\circ} \mathrm{F}\right)$ or $+55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(+131^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$.
If frequency adjustment is required, lift up the cover on the top of the ICOM to expose the adjustment trimmer. Depending upon the type of frequency measuring equipment that is available, any of the following procedures may be used:
A. DIRECT MEASUREMENT IN THE INJECTION CLAIN

1. WITh A FREqUENCY COUNTER. "Count" the frequency at the junction of C418 and C419 on the Oscillator/號 9 times the ICOM frequency. NOTE: The output from the ICOM itself is not sufficiently sinusoidal for reliable operation with nost frequency counters.
2. WITH A CONMUNICATION MONITOR (for example: Cushman Model CE-3). "Monitor" frequency at the junction of C418 and C419 on the Oscillator/Multiplier Board. The frequency monitored at this point is 9 times the conitors at ali receiver operating frequencies.
B. STANDARD "ON FREQUENCY" SIGNAL AT THE RECEIVER INPUT (Generated from a COMMUNICATION MONITOR, for example: Cushman Xodel CE-3).
. WITH A FREQUENCY COUNTER. "Count" the developed IF frequency at the tap of Z602-R2 on the IFAS board. The deviation from the nominal IF frequency (11
3. WITH AN 11.2 xHz IF FREqUENCY STANDARD (for example: General Electric Model 4EX9A10). Loosely couple the IF frequency standard to the IF signal path to create a heterodyne with the developed IF frequency, the IF frequency standard to the IF signal path to create a heterodyne with the deve
The resultant "beat frequency" can be monitored by either of the following methods:

a. Audible "beat frequency" the frequency standard).
b. Observe "beat frequency" at P904-4 with an Oscilloscope.
. With GE TEST SET (Heter Position B) connected to 3601 on the IFAS Board, visually observe the "beat frequency" indicated by moter movement.

The frequency of the "beat" is the frequency error, related to the iF frequency, This deviation, in Hz , is compared to the receiver operating frequency, also in Hz , to calculate the error in PPM.
The FM DETECTOR output (Veter Position A of the Test Set) is provided for routine test
The FM DETECTOR output The limited resolution available (0 . 025 V per kHz as moasured with
GE Test Set in Moter Position A, or 0,1 1 per kHz as measured with ativg

ICON $\frac{11}{}$ FREQ. X 9$)$ is at an ambient temperature of $26.5^{\circ} \mathrm{C}\left(79.8^{\circ} \mathrm{F}\right)$ set the oscillator for the correct mixer frequency
If the radio is not at an amblent temperature of $26.5^{\circ} \mathrm{C}$, setting errors can be minimized as follows :
A. To hold setting error to $\pm 0.6 \mathrm{PPM}$ (which is considered reasonable for 5 PPM ICONS):

1. Maintain the radio at $26,5^{\circ} \mathrm{C}\left(\pm 5^{\circ} \mathrm{C}\right)$ and set the oscillator to required mixer injection frequency, or by the frequency error factor shown in Figure 2.
B. To hold setting error to $\pm 0.35 \mathrm{pPM}$ (which is considered reasonable for 2 PPM ICOMS): Maintain the unit factor shown in Figure 2 .

For example: Assune the ambient temperature of the radio $1 s 18.5^{\circ} \mathrm{C}\left(65,4^{\circ} \mathrm{F}\right)$. At that temperature, the curve For example: Assune the amblent temperature of the radio $1818.5^{\circ} \mathrm{C}\left(65.4^{\circ} \mathrm{F}\right)$. At that temperat 18 Mt
shows a correction factor of 0.3 pPM . (At $138 \mathrm{MHz}, 1 \mathrm{PPM}$ is 138 Hz . At $174 \mathrm{xHz}, 1 \mathrm{PPM}$ is 174 Hz).

With a mixer injection frequency of 150 xHz , adjust the oscillator for a corrected mixer injection frequency $45 \mathrm{~Hz}(0.3 \times 150 \mathrm{~Hz})$ higher. If a negative correction factor is obtained (at tompera

DEGREES FAHRENHEIT

To horizontal
external sync input

Figure 1 - Test Setup for $20-H z$ Double-Trace Sweep Alignment

FRONT END ALIGNMENT

EQUIPMENT

1. GE Test Set Models 4EX3All, $4 E X 8 K 12$, or 20,000 ohms-per-Volt multimeter with a l-Volt scale.
2. A 138-174 MHz signal source.

PRELIMINARY CHECKS AND ADJUSTMENTS

1. Connect black plug from Test Set to Receiver Centralized Metering Jack J601, and red plug to system board metering jack J905. Set range selector switch to the TEST 1 position (or 1-Volt position on 4EX8K12).
2. For multi-frequency receivers with a frequency spacing up to 0.450 MHz for frequency range of $138-155 \mathrm{MHz}$, or 0.500 MHz for frequency range of $150.8-174 \mathrm{MHz}$, align the receiver on the channel nearest center frequency.
For multi-frequency receivers with a frequency spacing exceeding the above but no greater than .900 MHz for frequency range of $138-155 \mathrm{MHz}$, or 1.00 MHz for frequency range of $150.8-174 \mathrm{MHz}$, align the receiver using a center frequency tune-up ICOM. These limits can be extended to 1.60 MHz , and 1.80 MHz respectively, with 3 dB degradation in standard receiver specifications.
3. With Test Set in Position J, check for regulated +10 Volts. If using multimeter, measure between J905-3 (+) and J905-9 (-).
4. If using multimeter, connect the negative lead to J601-9 (A-).
5. Disable Channel Guard.

ALIGNMENT PROCEDJRE

	METERING POSITION		TUNING CONTROL	METER READING	PROCEDURE
STEP	GE Test Set	Multimeter - at J601-9			
OSCILLATOR/MULTIPLIER					
1.	$\begin{gathered} \mathrm{C} \\ (\text { MULT-1) } \end{gathered}$	Pin 3	C406	Maximum	Tune C406 for maximum meter reading.
2.			$\begin{aligned} & \mathrm{C} 411, \mathrm{C} 416, \\ & \mathrm{C} 306, \mathrm{C} 307 \end{aligned}$	See Procedure	Preset C411 and C416 to a position similar to C406. Next, preset C306 and C307 fully counterclockwise (minimum capacity).
3.	$\begin{gathered} \text { D } \\ \text { (MULT-2) } \end{gathered}$	Pin 4	C411, C416,	See Procedure	Tune C411 and C416 for maximum meter reading. Next, retune C406, C411 and C416 for maximum meter reading, then, carefully dip C306 and Tune C307 for maximum meter reading. Do NOT readjust C306 and C307.
RF SELECTIVITY					
4.	$\begin{gathered} \mathrm{A} \\ (\mathrm{FM} \\ \mathrm{DET}) \end{gathered}$	Pin 2		0.38 Volt	Apply an on-frequency signal to the antenna jack. Adjust the signal generator for a meter reading of 0.38 Volt.
5.	$\left(\mathrm{IF}^{\mathrm{B}} \mathrm{AMP}\right)$	Pin 1	$\begin{aligned} & \text { C502, C301 } \\ & \text { thru C305 } \\ & \text { (and T2301 } \\ & \text { if present) } \end{aligned}$	Maximum	Apply an on-frequency signal to the antenna jack, keeping the signal below saturation. Then tune C502 and C301 through C305 for maximum meter reading. In receivers with the UHS preamplifier, also tune T2301 for maximum meter reading.
6.	$\left(\text { IF }^{\mathrm{B}} \mathrm{AMP}\right)$	Pin 1	$\begin{aligned} & \text { C502, C301 } \\ & \text { thru C305 } \\ & \text { (and T2301 } \\ & \text { if present) } \end{aligned}$	Maximum	Apply an on-frequency signal to the antenna jack and slightly tune C502, C301 through C305 (and T2301 if present) for best quieting sensitivity.

COMPLETE RECEIVER ALIGNMENT

EQUIPMENT REQUIRED

1. GE Test Set Models 4EX3A11, 4EX8K12 (or 20,000 ohms-per-Volt multimeter with a 1 -Volt scale.
2. An $11,2 \mathrm{MHz}$ signal source (GE Test Set Model 4EX9A10). Also a $138-174 \mathrm{MHz}$ signal source (Measurements 803) with a one-inch piece of insulated wire no larger than . 065 inch diameter connected to generator probe.
3. A VTVM.

PRELIMINARY CHECKS AND ADJUSTMENTS

. Connect the black plug from the Test Set to receiver metering jack J601, and the red plug to system board metering jack J905. Set the range selector switch to the Test 1 (or 1-Volt position on the 4EX8K12)
2. For multi-frequency receivers with a frequency spacing up to 0.450 MHz for frequency range of $138-155 \mathrm{MHz}$, or 0.500 MHz for frequency range of $150.8-174 \mathrm{MHz}$, align the receiver on the channel nearest center frequency.
For multi-frequency receivers with a frequency spacing exceeding the above but no greater than 900 MHz for frequency range of $138-155 \mathrm{MHz}$, For multi-frequency receivers with a frequency spacing ex the receiver using a ceater frequency tune-up ICOM. These limits can be extended to 1.60 MHz , and 1.80 MHz respectively, with 3 dB degradation in standard receiver specifications.
3. With the Test Set in Position J , check for regulated +10 Volts. With multimeter, measure from J905-3 to $\mathrm{J} 905-9$.
4. If using multimeter, connect the negative lead to J601-9 (A-).
5. Disable the Channel Guard.

ALIGNMENT PROCEDURE

	METERING POSITION		TUNING CONTROL	$\begin{gathered} \text { METER } \\ \text { READING } \\ \hline \end{gathered}$	
STEP	$\begin{aligned} & \text { GE Test } \\ & \text { Set } \end{aligned}$	Multimeter - at J601-9			
FM DETECTOR					
1.	$\left.{ }_{(F M}{ }^{\mathrm{A}} \mathrm{DET}\right)$	Pin 2	L603	0.38 Volt	Apply the correct IF signal between $J 624$ and A-. Tune L603 for a meter reading of 0.38 Volts.
2.	$\left.{ }_{(F M}{ }^{A} \mathrm{DET}\right)$	Pin 2	R608	1 Volt RMS	Remove the Test Set metering plug from J601. Apply a 1000 microvolt signal with 1 kHz modulation and 3.0 kHz deviation to the antenna jack. Set R608 for 1 Volt RMS measured with a VTVM at P904-11 (VOL/SQ HI) and P904-17 (A-).
3.	$\underset{(\mathrm{MULT}-1)}{\mathrm{C}}$	Pin 3	C406	Maximum	Re-connect the Test Set metering plug to J601. Tune C406 for maximum meter reading.
4.			$\begin{aligned} & \text { C411, C416, } \\ & \text { C306, C307 } \end{aligned}$	See Procedure	Preset C411 and C416 to a position similar to C406. Next, preset C306 and C307 fully counterclockwise (minimum capacity).
5.	$\underset{(M U L T-2)}{D}$	Pin 4	$\begin{aligned} & \mathrm{C} 411, \mathrm{C} 416, \\ & \mathrm{C} 406 \end{aligned}$	See Procedure	Tune C411 and C416 for maximum meter reading. Next, retune C406, C411 and C416 for maximum meter reading, then, carefully dip C306 and tune C307 for maximun meter reading. Do NOT readjust C306 and C307.
RF SELECTIVITY					
6.	$\left.\stackrel{{ }^{\mathrm{A}}}{\text { (FM }} \mathrm{DET}\right)$	Pin 2		0.38 Volts	Apply an on-frequency signal in the bole adjacent to c305. Adjust the signal generator for a meter reading of 0.38 Volts.
7.	$\left.{ }_{(I F}{ }^{\mathrm{A}} \mathrm{MP}\right)$	Pin 1	C502	Maximum	Apply the signal as in Step 6 and tune C502 for maximum meter reading.
8.	$\left.{ }_{(I F}^{\mathrm{B}} \mathrm{AMP}\right)$	Pin 1	c305	Maximum	Apply an on-frequency signal in the hole adjacent to C304, keeping the signal below saturation. Then tune c305 for maximun meter reading.
9.	$\begin{gathered} \text { B } \\ \left(I F{ }^{\text {AMP }}\right) \end{gathered}$	Pin 1	C304	Maximum	Apply an on-frequency signal in the hole adjacent to c303, keeping the signal below saturation. Then tune c304 for maximum meter reading.
10.	$\left.\stackrel{B}{(I F}{ }^{\text {AMP }}\right)$	Pin 1	C303	Maximum	Apply an on-frequency signal in the hole adjacent to c302, keeping the signal below saturation. Then tune c303 for maximum meter reading.
11.	$\begin{gathered} \mathrm{B} \\ \text { (IF AMP) } \end{gathered}$	Pin 1	$\begin{aligned} & \text { C302 and } \\ & \text { C301 } \end{aligned}$	Maximum	Apply an on-frequency signal to the antenna jack, keeping the signal below saturation. Then tune C302 and c301 for maximum meter reading.
12.	$\left({ }^{\mathrm{B}}{ }^{\mathrm{AMP}}\right)$	Pin 1	C502, C301 thru C305 (and T2301 if present)	Maximum	Apply an on-frequency signal to the antenna jack, keeping the signal below saturation. Then tune C502 and C301 through C305 for maximum meter reading. In receivers with the UHS preamplifier, also tune T2301 for maximum meter reading.
13.	$\begin{gathered} \mathrm{B} \\ \text { (IF } \mathrm{AMP} \text {) } \end{gathered}$	Pin 1	C502, C301 thru C305 (and T2301 if present)	Maximum	Apply an on-frequency signal to the antenna jack and slightly tune C502 and C301 through C305 (and T2301 if present) for best quieting sensitivity.
MIXER \& $I F$					
The mixer and IF circuits have been aligned at the factory and will normally require no further adjustment. If adjustment is necessary, use the procedure outlined in Step 14. Refer to DATAFILE BULLETIN 1000-6 (IF Alignment of Two-Way Radio FM Receivers) for helpful suggestions on how to determine when IF Alignment is required.					

AUDIO POWER OUTPUT
test procedure
Measure Audio Power Output as follows
A. Apply a 1,000 -microvolt, on-frequency tet signal modulated by 1,000 hertz
with +3.0 kHz deviation to antenna ${ }^{\text {jach }}$
A301-J1.
B. With 15 -Watt Speaker:

Disconnect speaker lead pin from Systems
Plug p7ol-11 (on rear of Control Unit). Connect an 8.O-Ohm, $15-$ Watt 1 1oad resistor
from P904-19 to P904-18 or from P701-4 to 701-17 (Spe tri Hi) on the System Plug. Connect the Distortion Analyze
across the resistor as shown。

With Handset:

Lift the handset off of the hookswitch
Conecte the Distortion Analyzer input from P904-19 to P904-18.
C. Adjust the VoLUME control for 12 -Watt Analyzer as a
D. Make distortion measurements according to manufacturer's instructions. Reading
hound be less than 3%. If the receiver
sensitivity is to sensitivity is to be reasured, leave
all controls and equipment as they are.

SERVICE CHECK

If the distortion is more than 3%, or
maximum audio output is less than 12.0
Watts, make the following checks:
E. Battery and regulator voltage---1ow volt
F. Audio Gain (Refer to Receiver Trouble-
G. $\quad \begin{aligned} & \text { Discriminator Alignment (Refer to } \\ & \text { Receiver Alignment on reverse side of } \\ & \text { page) }\end{aligned}$

USABLE SENSITIVITY

 (12-dB SINAD)If sipp 1 checks out properly,
the receiver sensitivity
as for follows

 range position (1000-Hz filter in the
circuit). Tune the filter for in ircuit). Tune the filter for minimum
reading or null on the lowest possible reading or null on the
cale ($100 \%, 30 \%$, etc.)

- Place the RANGE switch to the SET LevEL position (filter out of the circuit) and
adjust the input LEVEL contror for and
dB reading on a mid range (30%).
D. While reducing the signal generator output, switch the RANGE controne from Seut
LLVEL to the distortion rane until a
LIV
 obtained between the SET LEVEL and
distortion range positions (filter out distortion range
and filter in).
E. The 12 -dB difference (Signal plus Noise and Distortion to noise plus distortion
ratio) is the "usable" sensitivity level ratio) is the "usablel" sensitivity level.
The sensitivity should be less than rated 12 dB SNAD specificications wis th an audio
output of at least 6.0 Watts (6.9 Volts Output of at least 6.0 watts (6.9 Volts
RMS across the 8.0 onm receiver load usin
the Distortion Analyzer as a vTVM).
F. Leave all controls as they are and all equipment connected if the Modulation
Acceptance Bandwidth test is to be per-
formed.

SERVICE Check
If the sensitivity level is more than
rated 12 de sINAD, check the alignnent of the
RF stages as directed in the Alignnent of toce-
dure and make the tain thene RF stages as directed in the Alignte
dure, and make the gain measuremen
on the Troubleshooting procedure.

MODULATION ACCEPTANCE

 BANDWIDTH (IF BANDWIDTH)
A. Sot the signal Cenerator ootput for twice
B. Set the Racke oontrol on the pistortion

${ }^{\text {The deviation ontrol reating tor the }}$

service check

STEP1-QUICK CHECKS

TEST SET CHECKS

These checks are typical voltage readings measured with GE Test Set Model 4EX3A11 in the Test 1 position, or Model 4EX8K12 in the l-Volt position.

Metering Position	Reading With No Signal In	Reading with 1 Micro- volt Unmodulated
A (FM DET)	Approximately 0.38 VDC	
B (IF Amp)	0.2 VDC	
C (Mult-1)	0.45 VDC	
D (Mult-2)	0.1 VDC	
J (Reg. +10 Volts at System Meter- ing jack)	+10 VDC	

STEP 4-VOLTAGE RATIO READINGS

EOUIPMENT REOURE
L. RF VOCTMETER
RF VOLTMETER
TYPE MV-18 C .
FREQUENCY CANEE BER FREQUENCY (BELOW SATURATION). CORHCC USE 1,000 HERTZ SIGNAL WITH 3.0 KHz DEVIATION
PROCEOURE:
APPLY PROBE TO INPUT OF STACE (FOR EXAMPI.E. SOURCE OF RF AMP
VOLTAGE REAOING (EI)

ANO TAKE READING (E2)
a Convert readings gy means of the following formula, voltage ratio. $\frac{E_{2}}{E_{1}}$
4. Check results with typical voltage ratios shown on diagram.

SYMPTOM CHECKS

SYMPTOM	PROCEDURE
NO SUPPLY VOLTAGE	- Check power connections and continuity of supply leads, and check fuse. If fuse is blown, check receiver for short circuits.
No REGULATED 10-VOLTS	- Check the 12 -Volt supply. Then check 10 -Volt regulator circuit. (See Troubleshooting Procedure for 10 -Volt Regulator).
LOW 1ST LIM READING	- Check supply voltages and then check oscillator readings at P904-1 \& -2 as shown in STEP 2A. - Make Simplified vtvm gain checks from Mixer through 1st Limiter stages as shown in STEP 2A.
LOW OSCILLATOR/MULTI- pLIER READINGS	- Check alignment of Oscillator/Multiplier. (Refer to Front End Alignment Procedure). - Check voltage readings of Oscillator/Multipler (Q401, Q402).
LOW RECEIVER SENSITIVITY	- Check Front End Alignment. (Refer to Receiver Alignment procedure). - Check antenna connections, cabje and antenna switch. - Check Oscillator injection voltage. - Check voltage readings of Mixer and IF Amp. - Make SIMPLIFIED GAIN CHECKS (STEP 2A).
IMPROPER SQUELCH OPERATION	- Check voltages on Schematic Diagram. - Make gain and waveform checks with noise. - Make gain and waveform checks with 6 kHz signal. - Check discrete components in the squelch circuit. - Replace IC circuit U603.
LOW OR DISTORTED AUDIO	- Check voltages on Schematic Diagram. - Make gain and waveform checks. - Check receiver and alignment and FM Detector output. - Check Q601 thru Q605 and other discrete components. - Replace IC circuit U604.

STEP 3-AUDIO \& SQUELCH WAVEFORMS
OSCILIOSCOPE CONNECTED BETWELN A. AND POINTS
INODCATEO PY ARROW.
3. 6 KHz GEMERATOH

AUDIO CIRCUIT CHECK WITH STANDARD SIGNAL

TROUBLESHOOTING PROCEDURE

paxarnumary curacs sid ansussums
.

年为

$$
5
$$

ALIGNMENT PROCEDURE

STEP 1-QUICK CHECKS

test set checks

		Fatiremitue
4 A Mase minime		
$0^{8(10)}$		0.2 me
$\%$ \% mamere	0.80 me	
$\bigcirc 0^{\circ} \mathrm{m}$	0.48 ec	
	to wo	

symptom снескs

	macoum
Lun str	-
	-
隹	
	$\bigcirc 0$
	- Check discrete components in the squelch ci

troubleshooting procedure

PRODUCTION CHANGES

-
$1 .-2$
$\cdots=2=$

SCHEMATIC DIAGRAM
138-174 MHz, RF ASSEMBLI
OSC-MULT, MIXERFIF AND
UHS PRE-AMPLIFIER BOARDS

MODIFICATION INSTRUCTIONS FOR HIGH BAND HIGH SIDE INJECTION.

1. ON OSC/MULT BD'S 1904I66IOGI \& G3 (LOW SPL.IT) REPLACE C405 WITH C2301 (I2pf), REPLACE C409 WITH C2302 (4pf) AND REPLACE C4I3 WITH C2303 (4pf) DISCARD ITEMS C2304, C2305, \& C2306.
ON OSC/MULT BD'S I9D4I66IOG2 \& G4 (HIGH SPLIT) REPLACE C405 WITH C2304 (IOpf), REPLACE C409 WITH C2305 (2.2pf) AND REPLACE C4I3 WITH C2306 (2.2pf)
DISCARD ITEMS C230I, C2302, \& C2303. SOLDER ALL ELECTF,ICAL CONNECTIONS. C230I THRU C2306 ARE PART OF MOD KIT I9AI30045GI.
2. MODIFY RF. CKT ASM PLI9D4I6693 BY ADDING I9AI30028PI, SPACER, 19AI30029PI WASHER, AND 19A130028P2 SPACER AS SHOWN TO L3O6 \& L307 (LOW SPLIT) OR L3I6, \& L3I7 (HIGH SPLIT). SLIDE SPACERS, \& WASHER ON CERAMIC POST FROM TOP IN ORDER SHOWN. THESE ITEMS ARE PART OF MOD KIT PLI9AI30045GI.
3. IN APPLICATION OF THIS KIT THE CRYSTAL OSCILLATOR FREQUENCY MUST BE CHANGED PER THE FOLLOWING FORMULA:

$$
F x=\frac{F_{0}+11.2}{9}
$$

4. MARK ALL OSC/MULT. BD'S (19D416610) WITH A BLUE COLOR DOT IN THE AREA OF THE PL DRAWING NO. PER I9AII5740PI.

MARK ALL RECEIVER CASTINGS WITH A BLUE COLOR DOT IN THE AREA OF THE PL DRAWING NO. PER I9AII5740PI.
5. APPLY LABEL (I9AI30206PI) TO DISCRIMINATOR COVER ON IFAS BD.

MODIFICATION INSTRUCTIONS

HIGH SIDE FREQUENCY INJECTION KIT
Issue 1

